Facial Skin Segmentation Using Bacterial Foraging Optimization Algorithm
نویسندگان
چکیده
Nowadays, analyzing human facial image has gained an ever-increasing importance due to its various applications. Image segmentation is required as a very important and fundamental operation for significant analysis and interpretation of images. Among the segmentation methods, image thresholding technique is one of the most well-known methods due to its simplicity, robustness, and high precision. Thresholding based on optimization of the objective function is among the best methods. Numerous methods exist for the optimization process and bacterial foraging optimization (BFO) is among the most efficient and novel ones. Using this method, optimal threshold is extracted and then segmentation of facial skin is performed. In the proposed method, first, the color facial image is converted from RGB color space to Improved Hue-Luminance-Saturation (IHLS) color space, because IHLS has a great mapping of the skin color. To perform thresholding, the entropy-based method is applied. In order to find the optimum threshold, BFO is used. In order to analyze the proposed algorithm, color images of the database of Sahand University of Technology of Tabriz, Iran were used. Then, using Otsu and Kapur methods, thresholding was performed. In order to have a better understanding from the proposed algorithm; genetic algorithm (GA) is also used for finding the optimum threshold. The proposed method shows the better results than other thresholding methods. These results include misclassification error accuracy (88%), non-uniformity accuracy (89%), and the accuracy of region's area error (89%).
منابع مشابه
Defect Fruit Image Analysis using Advanced Bacterial Foraging Optimizing Algorithm
Bacterial foraging optimization algorithm has been widely accepted as a global optimization algorithm. Since Image segmentation is the basic step in many image processing applications, so faithful segmentation algorithm must be developed for successful implementation of the processing applications. Core aim of image segmentation is to extract the information which is of interest for a particula...
متن کاملA Novel Image Segmentation Method Based on An Improved Bacterial Foraging Optimization Algorithm
When some bionic optimization algorithms are used for image segmentation, we find that the search speeds of these algorithms are slow and the local searching abilities of these algorithms need be improved. In order to solve these problems, this paper proposed a new image segmentation method based on the improved bacterial foraging optimization algorithm. Firstly, a dynamic step size is used to ...
متن کاملSub-transmission sub-station expansion planning based on bacterial foraging optimization algorithm
In recent years, significant research efforts have been devoted to the optimal planning of power systems. Substation Expansion Planning (SEP) as a sub-system of power system planning consists of finding the most economical solution with the optimal location and size of future substations and/or feeders to meet the future load demand. The large number of design variables and combination of discr...
متن کاملControl of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller
This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...
متن کاملImage Segmentation Using Revised Bacterial Foraging Optimization Algorithm
In digital image processing, image segmentation is the most important task. This paper provides an faithful image segmentation algorithm with biologically inspired technique Bacterial Foraging Optimization (BFO) for different images with different size.. The methodology of this paper is to separate R G and B planes of input image and then Revised Bacterial Foraging Optimization Algorithm (RBFOA...
متن کامل